DDI_CB_REGISTER(9F) Kernel Functions for Drivers DDI_CB_REGISTER(9F)

NAME


ddi_cb_register, ddi_cb_unregister - register and unregister a device
driver callback handler

SYNOPSIS


#include <sys/sunddi.h>

int ddi_cb_register(dev_info_t *dip, ddi_cb_flags_t flags,
ddi_cb_func_t cbfunc, void *arg1, void *arg2,
ddi_cb_handle_t * ret_hdlp);


int ddi_cb_unregister(ddi_cb_handle_t hdl);


INTERFACE LEVEL


illumos DDI specific (illumos DDI).

PARAMETERS


ddi_cb_register()

dip
Pointer to the dev_info structure.


flags
Flags to determine which callback events can be handled.


cbfunc
Callback handler function.


arg1
First argument to the callback handler.


arg2
Second (optional) argument to the callback handler.


ret_hdlp
Pointer to return a handle to the registered callback.


ddi_cb_unregister()

hdl
Handle to the registered callback handler that is to be
unregistered.


DESCRIPTION


The ddi_cb_register() function installs a callback handler which
processes various actions that require the driver's attention while
it is attached. The driver specifies which callback actions it can
handle through the flags parameter. With each relevant action, the
specified callback function passes the arg1 and arg2 arguments along
with the description of each callback event to the driver.


The ddi_cb_unregister() function removes a previously installed
callback handler and prevents future processing of actions.


The flags parameter consists of the following:

DDI_CB_FLAG_INTR
The device driver participates in interrupt
resource management. The device driver may
receive additional interrupt resources from the
system, but only because it can accept callback
notices informing it when it has more or less
resources available. Callback notices can occur
at anytime after the driver is attached.
Interrupt availability varies based on the
overall needs of the system.


The cdfunc is a callback handler with the following prototype:

typedef int (*ddi_cb_func_t)(dev_info_t *dip,
ddi_cb_action_t action, void *cbarg,
void *arg1, void *arg2);


The cbfunc routine with the arguments dip, action, cbarg, arg1 and
arg2 is called upon receipt of any callbacks for which the driver is
registered. The callback handler returns DDI_SUCCESS if the callback
was handled successfully, DDI_ENOTSUP if it received a callback
action that it did not know how to process, or DDI_FAILURE if it has
an internal failure while processing an action.


The action parameter can be one of the following:

DDI_CB_INTR_ADD
For interrupt resource management, the driver
has more available interrupts. The driver can
allocate more interrupt vectors and then set up
more interrupt handling functions by using
ddi_intr_alloc(9F).


DDI_CB_INTR_REMOVE
For interrupt resource management, the driver
has fewer available interrupts. The driver
must release any previously allocated
interrupts in excess of what is now available
by using ddi_intr_free(9F).


The cbarg parameter points to an action-specific argument. Each class
of registered actions specifies its own data structure that a
callback handler should dereference when it receives those actions.


The cbarg parameter is defined as an integer in the case of
DDI_CB_INTR_ADD and DDI_CB_INTR_REMOVE actions. The callback handler
should cast the cbarg parameter to an integer. The integer represents
how many interrupts have been added or removed from the total number
available to the device driver.


If a driver participates in interrupt resource management, it must
register a callback with the DDI_CB_FLAG_INTR flag. The driver then
receives the actions DDI_CB_INTR_ADD and DDI_CB_INTR_REMOVE whenever
its interrupt availability has changed. The callback handler should
use the interrupt functions ddi_intr_alloc(9F) and ddi_intr_free(9F)
functions to respond accordingly. A driver is not required to
allocate all interrupts that are available to it, but it is required
to manage its allocations so that it never uses more interrupts than
are currently available.

RETURN VALUES


The ddi_cb_register() and ddi_cb_unregister() functions return:

DDI_SUCCESS
on success


DDI_EINVAL
An invalid parameter was given when registering a
callback handler, or an invalid handle was given when
unregistering.


DDI_EALREADY
An attempt was made to register a callback handler
while a previous registration still exists.


The cbfunc routine must return:

DDI_SUCCESS
on success


DDI_ENOTSUP
The device does not support the operation


DDI_FAILURE
Implementation specific failure


CONTEXT


These functions can be called from kernel, non-interrupt context.

EXAMPLES


Example 1: ddi_cb_register



/*
* attach(9E) routine.
*
* Creates soft state, registers callback handler, initializes
* hardware, and sets up interrupt handling for the driver.
*/
xx_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{
xx_state_t *statep = NULL;
xx_intr_t *intrs = NULL;
ddi_intr_handle_t *hdls;
ddi_cb_handle_t cb_hdl;
int instance;
int type;
int types;
int nintrs;
int nactual;
int inum;

/* Get device instance */
instance = ddi_get_instance(dip);

switch (cmd) {
case DDI_ATTACH:

/* Get soft state */
if (ddi_soft_state_zalloc(state_list, instance) != 0)
return (DDI_FAILURE);
statep = ddi_get_soft_state(state_list, instance);
ddi_set_driver_private(dip, (caddr_t)statep);
statep->dip = dip;

/* Initialize hardware */
xx_initialize(statep);

/* Register callback handler */
if (ddi_cb_register(dip, DDI_CB_FLAG_INTR, xx_cbfunc,
statep, NULL, &cb_hdl) != 0) {
ddi_soft_state_free(state_list, instance);
return (DDI_FAILURE);
}
statep->cb_hdl = cb_hdl;

/* Select interrupt type */
ddi_intr_get_supported_types(dip, &types);
if (types & DDI_INTR_TYPE_MSIX) {
type = DDI_INTR_TYPE_MSIX;
} else if (types & DDI_INTR_TYPE_MSI) {
type = DDI_INTR_TYPE_MSI;
} else {
type = DDI_INTR_TYPE_FIXED;
}
statep->type = type;

/* Get number of supported interrupts */

ddi_intr_get_nintrs(dip, type, &nintrs);

/* Allocate interrupt handle array */
statep->hdls_size = nintrs * sizeof (ddi_intr_handle_t);
hdls = kmem_zalloc(statep->hdls_size, KMEM_SLEEP);

/* Allocate interrupt setup array */
statep->intrs_size = nintrs * sizeof (xx_intr_t);
statep->intrs = kmem_zalloc(statep->intrs_size, KMEM_SLEEP);

/* Allocate interrupt vectors */
ddi_intr_alloc(dip, hdls, type, 0, nintrs, &nactual, 0);
statep->nactual = nactual;

/* Configure interrupt handling */
xx_setup_interrupts(statep, nactual, statep->intrs);

/* Install and enable interrupt handlers */
for (inum = 0; inum < nactual; inum++) {
ddi_intr_add_handler(&statep->hdls[inum],
statep->intrs[inum].inthandler,
statep->intrs[inum].arg1,
statep->intrs[inum].arg2);
ddi_intr_enable(statep->hdls[inum]);
}

break;

case DDI_RESUME:

/* Get soft state */
statep = ddi_get_soft_state(state_list, instance);
if (statep == NULL)
return (DDI_FAILURE);

/* Resume hardware */
xx_resume(statep);

break;
}

return (DDI_SUCCESS);
}

/*
* detach(9E) routine.
*
* Stops the hardware, disables interrupt handling, unregisters
* a callback handler, and destroys the soft state for the driver.
*/
xx_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{
xx_state_t *statep = NULL;
int instance;
int inum;


/* Get device instance */
instance = ddi_get_instance(dip);

switch (cmd) {
case DDI_DETACH:

/* Get soft state */
statep = ddi_get_soft_state(state_list, instance);
if (statep == NULL)
return (DDI_FAILURE);

/* Stop device */
xx_uninitialize(statep);

/* Disable and free interrupts */
for (inum = 0; inum < statep->nactual; inum++) {
ddi_intr_disable(statep->hdls[inum]);
ddi_intr_remove_handler(statep->hdls[inum]);
ddi_intr_free(statep->hdls[inum]);
}

/* Unregister callback handler */
ddi_cb_unregister(statep->cb_hdl);

/* Free interrupt handle array */
kmem_free(statep->hdls, statep->hdls_size);

/* Free interrupt setup array */
kmem_free(statep->intrs, statep->intrs_size);

/* Free soft state */
ddi_soft_state_free(state_list, instance);

break;

case DDI_SUSPEND:

/* Get soft state */
statep = ddi_get_soft_state(state_list, instance);
if (statep == NULL)
return (DDI_FAILURE);

/* Suspend hardware */
xx_quiesce(statep);

break;
}

return (DDI_SUCCESS);
}

/*
* (*ddi_cbfunc)() routine.
*
* Adapt interrupt usage when availability changes.
*/
int
xx_cbfunc(dev_info_t *dip, ddi_cb_action_t cbaction, void *cbarg,
void *arg1, void *arg2)
{
xx_state_t *statep = (xx_state_t *)arg1;
int count;
int inum;
int nactual;

switch (cbaction) {
case DDI_CB_INTR_ADD:
case DDI_CB_INTR_REMOVE:

/* Get change in availability */
count = (int)(uintptr_t)cbarg;

/* Suspend hardware */
xx_quiesce(statep);

/* Tear down previous interrupt handling */
for (inum = 0; inum < statep->nactual; inum++) {
ddi_intr_disable(statep->hdls[inum]);
ddi_intr_remove_handler(statep->hdls[inum]);
}

/* Adjust interrupt vector allocations */
if (cbaction == DDI_CB_INTR_ADD) {

/* Allocate additional interrupt vectors */
ddi_intr_alloc(dip, statep->hdls, statep->type,
statep->nactual, count, &nactual, 0);

/* Update actual count of available interrupts */
statep->nactual += nactual;

} else {

/* Free removed interrupt vectors */
for (inum = statep->nactual - count;
inum < statep->nactual; inum++) {
ddi_intr_free(statep->hdls[inum]);
}

/* Update actual count of available interrupts */
statep->nactual -= count;
}

/* Configure interrupt handling */
xx_setup_interrupts(statep, statep->nactual, statep->intrs);

/* Install and enable interrupt handlers */
for (inum = 0; inum < statep->nactual; inum++) {
ddi_intr_add_handler(&statep->hdls[inum],
statep->intrs[inum].inthandler,
statep->intrs[inum].arg1,
statep->intrs[inum].arg2);
ddi_intr_enable(statep->hdls[inum]);
}

/* Resume hardware */
xx_resume(statep);

break;

default:
return (DDI_ENOTSUP);
}

return (DDI_SUCCESS);
}


ATTRIBUTES


See attributes(7) for descriptions of the following attributes:


+--------------------+-----------------+
| ATTRIBUTE TYPE | ATTRIBUTE VALUE |
+--------------------+-----------------+
|Interface Stability | Private |
+--------------------+-----------------+
|MT-Level | Unsafe |
+--------------------+-----------------+

SEE ALSO


attributes(7), ddi_intr_alloc(9F), ddi_intr_free(9F),
ddi_intr_set_nreq(9F)

NOTES


Users of these interfaces that register for DDI_CB_FLAG_INTR become
participants in interrupt resource management. With that
participation comes a responsibility to properly adjust interrupt
usage. In the case of a DDI_CB_INTR_ADD action, the system guarantees
that a driver can allocate a total number of interrupt resources up
to its new number of available interrupts. The total number of
interrupt resources is the sum of all resources allocated by the
function ddi_intr_alloc(9F), minus all previously released by the
function ddi_intr_free(9F). In the case of a DDI_CB_INTR_REMOVE
action, the driver might have more interrupts allocated than are now
currently available. It is necessary for the driver to release the
excess interrupts, or it will have a negative impact on the interrupt
availability for other drivers in the system.


A failure to release interrupts in response to a DDI_CB_INTR_REMOVE
callback generates the following warning on the system console:

WARNING: <driver><instance>: failed to release interrupts for
IRM (nintrs = ##, navail=##).


Participation in interrupt resource management ends when a driver
uses the ddi_cb_unregister() function to unregister its callback
function. The callback function must still operate properly until
after the call to the ddi_cb_unregister() function completes. If
addinterrupts were given to the driver because of its participation,
then a final use of the callback function occurs to release the
additional interrupts. The call to the ddi_cb_unregister() function
blocks until the final use of the registered callback function is
finished.

January 30, 2009 DDI_CB_REGISTER(9F)

tribblix@gmail.com :: GitHub :: Privacy